More connections between the matching polynomial and the chromatic polynomial

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relationship between Coefficients of Characteristic Polynomial and Matching Polynomial of Regular Graphs and its Applications

ABSTRACT. Suppose G is a graph, A(G) its adjacency matrix and f(G, x)=x^n+a_(n-1)x^(n-1)+... is the characteristic polynomial of G. The matching polynomial of G is defined as M(G, x) = x^n-m(G,1)x^(n-2) + ... where m(G,k) is the number of k-matchings in G. In this paper, we determine the relationship between 2k-th coefficient of characteristic polynomial, a_(2k), and k-th coefficient of matchin...

متن کامل

Approximating the Chromatic Polynomial

Chromatic polynomials are important objects in graph theory and statistical physics, but as a result of computational difficulties, their study is limited to graphs that are small, highly structured, or very sparse. We have devised and implemented two algorithms that approximate the coefficients of the chromatic polynomial P (G,x), where P (G, k) is the number of proper k-colorings of a graph G...

متن کامل

The Chromatic Polynomial

It is shown how to compute the Chromatic Polynomial of a simple graph utilizing bond lattices and the Möbius Inversion Theorem, which requires the establishment of a refinement ordering on the bond lattice and an exploration of the Incidence Algebra on a partially ordered set.

متن کامل

extensions of some polynomial inequalities to the polar derivative

توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی

15 صفحه اول

Categorifications of the chromatic polynomial

We will discuss different categorifications of the chromatic polynomial, how they are related to each other as well as how they relate to the Hochschild homology of algebras and Khovanov link homology.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: AKCE International Journal of Graphs and Combinatorics

سال: 2019

ISSN: 0972-8600,2543-3474

DOI: 10.1016/j.akcej.2018.08.008